

V	Draft Report
	Revised Report

Report Date: 12-Jul-17 17:11

Draft Laboratory Report SC36391

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: Gulf Chelsea

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Rebecca Merz Quality Services Manager

Rebecca Mery

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 14 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC36391

Project: Gulf Terminal - Chelsea, MA

Project Number: Gulf Chelsea

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC36391-01	Chelsea Creek	Surface Water	27-Jun-17 10:00	28-Jun-17 14:05
SC36392-01	Outfall 003	Surface Water	27-Jun-17 10:00	28-Jun-17 14:05

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Please note this report contains 30 pages of analytical data from New England Boiassay, A division of GZA.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SM 9222D-97

Samples:

SC36392-01

Outfall 003

This sample was analyzed outside the EPA recommended holding time per client request.

Fecal Coliforms

SW846 8260C

Calibration:

1706082

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

1711116-BLK1

1711116-BLK2

1711116-BS1

1711116-BS2

1711116-BSD1

1711116-BSD2

Chelsea Creek

Outfall 003

S705740-ICV1

S705898-CCV1

Laboratory Control Samples:

1711116 BS/BSD

Tert-Butanol / butyl alcohol percent recoveries (137/121) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Outfall 003

1711116 BSD

Ethanol RPD 43% (20%) is outside individual acceptance criteria.

SW846 8260C

Laboratory Control Samples:

1711116 BSD

Tert-Butanol / butyl alcohol RPD 21% (20%) is outside individual acceptance criteria.

SW846 8270D

Calibration:

1706036

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

This affected the following samples:

1711096-BLK1

1711096-BS1

1711096-BSD1

Outfall 003

S705262-ICV1

S706037-CCV1

S706219-CCV1

Samples:

SC36392-01

Outfall 003

Duplicate analysis confirmed surrogate failure due to matrix effects.

2-Fluorophenol

Phenol-d5

SC36392-01RE1

Outfall 003

Duplicate analysis confirmed surrogate failure due to matrix effects.

2-Fluorophenol

Phenol-d5

SW846 8270D SIM

Calibration:

1704025

Analyte quantified by quadratic equation type calibration.

Benzo (a) pyrene

Benzo (b) fluoranthene

Benzo (e) pyrene-d12

Benzo (g,h,i) perylene

Benzo (k) fluoranthene

Dibenzo (a,h) anthracene

Indeno (1,2,3-cd) pyrene

SW846 8270D SIM

Calibration:

1704025

This affected the following samples:

1711096-BLK2

1711096-BS2

1711096-BSD2

Chelsea Creek

Outfall 003

S703654-ICV1

S706180-CCV1

S706181-CCV1

Samples:

S706180-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (k) fluoranthene (24.8%)

This affected the following samples:

1711096-BLK2

1711096-BS2

1711096-BSD2

Chelsea Creek

Outfall 003

Sample Acceptance Check Form

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC36391			
Sample(s) received on:	6/28/2017			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples re	frigerated upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	✓		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	$\overline{\checkmark}$		
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	\overline{C}		
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	~		

Client:

Gulf Oil L.P.

Sample Acceptance Check Form

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC36392			
Sample(s) received on:	6/28/2017			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	✓		
Were samples re	ceived within method-specific holding times?	\checkmark		

Client:

Gulf Oil L.P.

Summary of Hits

Lab ID: SC36391-01

Client ID: Chelsea Creek

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.10		0.05	mg/L	E350.1
Salinity	24.6		1.00	ppt (1000)	SM 2520 (01)
Total Solids	29000		100	mg/l	SM2540 B (11)
Total Suspended Solids	9.0		0.8	mg/l	SM2540D (11)
Total Residual Chlorine	0.028		0.020	mg/l	SM4500-Cl-G (11)
Total Organic Carbon	3.28		1.00	mg/l	SM5310B (00, 11)
Lab ID: SC36392-01			Client ID: Outfall 003		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method

0.05 E350.1 Ammonia as Nitrogen 0.26 mg/L**Total Solids** 488 5.00 mg/lSM2540 B (11) Total Suspended Solids 10.3 0.8 SM2540D (11) mg/l Total Residual Chlorine 0.066 0.020 mg/lSM4500-Cl-G (11) Total Organic Carbon 7.18 1.00 mg/l SM5310B (00, 11)

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Chelsea (SC36391-				Client Pr Gulf Cl			Matrix Surface Wa		ection Date 7-Jun-17 10			Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	rganic Aromatics by SW84 by method SW846 5030 V												
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	30-Jun-17	30-Jun-17	GMA	1711116	X
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by	<u>y SIM</u>												
Prepared	by method SW846 3510C	<u>.</u>											
33-32-9	Acenaphthene	< 0.049		μg/l	0.049	0.007	1	SW846 8270D SIM	30-Jun-17	10-Jul-17	MSL	1711096	X
108-96-8	Acenaphthylene	< 0.049		μg/l	0.049	0.013	1	"	"	"	"	"	Χ
20-12-7	Anthracene	< 0.049		μg/l	0.049	0.008	1	"	"	"	"	"	Χ
6-55-3	Benzo (a) anthracene	< 0.049		μg/l	0.049	0.017	1	"	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	< 0.049		μg/l	0.049	0.020	1	"	"	u	"	"	Χ
205-99-2	Benzo (b) fluoranthene	< 0.049		μg/l	0.049	0.020	1	"	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	< 0.049		μg/l	0.049	0.019	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.049		μg/l	0.049	0.018	1	"	"	"	"	"	Χ
218-01-9	Chrysene	< 0.049		μg/l	0.049	0.005	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.049		μg/l	0.049	0.018	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 0.049		μg/l	0.049	0.004	1	"	"	"	"	"	Χ
86-73-7	Fluorene	< 0.049		μg/l	0.049	0.012	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.049		μg/l	0.049	0.021	1	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 0.049		μg/l	0.049	0.021	1	"	"	"	"	"	Χ
85-01-8	Phenanthrene	< 0.049		μg/l	0.049	0.008	1	"	"	"	"	"	Χ
129-00-0	Pyrene	< 0.049		μg/l	0.049	0.006	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
205440-82-0	Benzo (e) pyrene-d12	69			30-13	0 %		"	"	"	"	"	
	als by EPA 200/6000 Series I by method General Prep-I												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	28-Jun-17		AAW	1710965	ı
General C	hemistry Parameters												
782-50-5	Total Residual Chlorine	0.028	CIHT	mg/l	0.020	0.006	1	SM4500-CI-G (11)	30-Jun-17 09:38	05-Jul-17 11:27	RLT	1711119	
	рН	7.92	рН	pH Units			1	ASTM D 1293-99B	28-Jun-17 10:00	29-Jun-17 14:20	TN	1710957	
	Salinity	24.6		ppt (1000)	1.00	0.144	1	SM 2520 (01)	06-Jul-17	06-Jul-17	BD	1711426	i
	Total Solids	29,000	LIV	mg/l	100	30.6	1	SM2540 B (11)	29-Jun-17	05-Jul-17	СМВ	1711007	×
	Total Suspended Solids	9.0		mg/l	0.8	0.4	1	SM2540D (11)	29-Jun-17	30- Jun-17	СМВ	1711008	×

Sample Id Chelsea (SC36391					Project # Chelsea		<u>Matrix</u> Surface W	· · · · · · · · · · · · · · · · · · ·	ection Date -Jun-17 10			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	Chemistry Parameters												
	Total Organic Carbon	3.28		mg/l	1.00	0.246	1	SM5310B (00, 11)	07-Jul-17	07-Jul-17	RLT	1711573	Х
	acted Analyses by method NA												
Analysis p	erformed by GZA Geoenvird	onmental, Inc Me	anchester, C	CT^* -									
	Aquatic Toxicity	See Report		N/A			1	EPA-821-R-02-0 12				'[none]'	
	octed Analyses by method 392124												
Analysis p	erformed by Phoenix Enviro	onmental Labs, Inc	. * - MACT	007									
7664-41-7	Ammonia as Nitrogen	0.10		mg/L	0.05	0.05	1	E350.1	"	03-Jul-17 10:38	MACT0	392124A	

12-Jul-17 17:11 Page 10 of 14

Sample Id Outfall 00 SC36392-					Project # Chelsea		<u>Matrix</u> Surface Wa		ection Date '-Jun-17 10			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
	rganic Compounds by SW8												
71-43-2	by method SW846 5030 W Benzene	< 1.00		μg/l	1.00	0.28	1	SW846 8260C	30- lun-17	30-Jun-17	GMA	1711116	Х
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.33	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.24	1	"	"		"	"	X
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.35	1	"	"	,,	"		X
108-88-3	Toluene	< 1.00		μg/l	1.00	0.30	1	"	"	"	"		X
75-01-4	Vinyl chloride	< 1.00			1.00	0.47	1	"	"	"			X
179601-23-1	•	< 2.00		µg/l	2.00	0.38	1	"	"	"			X
95-47-6	<i>'</i> ' <i>y</i>	< 1.00		μg/l							"		
75-65-0	o-Xylene			μg/l	1.00	0.28	1				"		X
	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	5.90	1	"			"	"	X
64-17-5	Ethanol	< 200		μg/l	200	30.9	1						X
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	102			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	"	"	"	
Semivolati	le Organic Compounds by C	GCMS											
	ictables/Phenols												
<u>Prepared</u> 108-95-2	by method SW846 3510C	< 0.645		/1	F 00	0.645	4	SW846 8270D	30-Jun-17	04 1 17	MCI	1711006	V
100-93-2	Phenol	< 0.645	U	μg/l	5.00	0.645	1	3VV040 02/UD	30-Jun-17	04-Jul-17	MSL	1711096	
Surrogate r													
367-12-4	2-Fluorophenol	7	SDUP		15-11			"	"	"	"	"	
4165-62-2	Phenol-d5	12	SDUP		15-11	0 %		"	"	"	"	"	
	is of Acid Extractables/Phe	enols											
59-50-7	by method SW846 3510C 4-Chloro-3-methylphenol	< 0.501	U	μg/l	5.00	0.501	1	SW846 8270D	30-Jun-17	12 Jul 17	MSL	1711096	X
95-57-8	2-Chlorophenol	< 0.748	U	μg/l	5.00	0.748	1	"	30-Juli-17	12-Jul-17	WISE "	"	X
120-83-2	2,4-Dichlorophenol	< 0.748	U		5.00	0.530					"		X
105-67-9	2,4-Dimethylphenol	< 0.653		μg/l	5.00	0.653	1 1				"		X
534-52-1	4,6-Dinitro-2-methylphenol	< 0.319	U	μg/l	5.00	0.033	1		"				X
51-28-5	2,4-Dinitrophenol	< 0.561	U	μg/l	5.00	0.561	1				"		X
95-48-7	2-Methylphenol	< 0.665	U	μg/l	5.00						"		
	• •		U	μg/l		0.665	1				"	"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	< 0.615	U	μg/l	10.0	0.615	1					-	Х
88-75-5	2-Nitrophenol	< 0.465	U	μg/l	5.00	0.465	1	"	"	"	"	"	Х
100-02-7	4-Nitrophenol	< 0.838	U	μg/l	5.00	0.838	1	"	"	"	"	"	Х
87-86-5	Pentachlorophenol	< 0.373	U	μg/l	5.00	0.373	1	"	"	"	"	"	Х
108-95-2	Phenol	< 0.645	U	μg/l	5.00	0.645	1	"	"	"	"	"	Х
95-95-4	2,4,5-Trichlorophenol	< 0.520	U	μg/l	5.00	0.520	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 0.518	U	μg/l	5.00	0.518	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
367-12-4	2-Fluorophenol	7	SDUP		15-11	0 %		"	"	"	"	"	
4165-62-2	Phenol-d5	11	SDUP		15-11			"	"	"	"	"	
SVOCs by													

Outfall 00 SC36392-				Client Pr Gulf Cl			<u>Matrix</u> Surface W	·	ection Date 7-Jun-17 10			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
	by method SW846 3510C	<u> </u>											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	30-Jun-17	10-Jul-17	MSL	1711096	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1	"	"	"	"	"	Х
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.017	1	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.020	1	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.020	1	"	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.019	1		"	"		"	Х
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.019	1		"		"	"	Х
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.005	1	"		"	"	"	X
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.003	1	"	"		"	"	X
206-44-0	Fluoranthene	< 0.050			0.050	0.004	1	"	"	"	"	"	X
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.004	1	,,					X
193-39-5				μg/l		0.012		,,					X
91-20-3	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050		1	"					
85-01-8	Naphthalene	< 0.050		μg/l	0.050	0.022	1	"			"	"	X
	Phenanthrene	< 0.050		μg/l	0.050	0.008	1						X
129-00-0	Pyrene	< 0.050		µg/l	0.050	0.007	1	<u>"</u>					X
	Benzo (e) pyrene-d12	60 M. d. D.			30-13	0 %		11	"	"	"	"	
205440-82-0		Methods		N/A	30-13	0 %	1	EPA 200/6000 methods	" 28-Jun-17			1710965	
205440-82-0 Total Meta Prepared	Benzo (e) pyrene-d12 als by EPA 200/6000 Series by method General Prep-	Methods Metal Field Preserved; pH<2		N/A	30-13	0 %	1		" 28-Jun-17				
205440-82-0 Total Meta Prepared General C	Benzo (e) pyrene-d12 als by EPA 200/6000 Series by method General Prep- Preservation	Methods Metal Field Preserved; pH<2	CIHT	N/A mg/l	<i>30-13</i>	0.006	1		" 28-Jun-17 30-Jun-17 09:38	" 05-Jul-17 11:35			
205440-82-0 Total Meta Prepared	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters	Methods Metal Field Preserved; pH<2 confirmed	CIHT pH					methods SM4500-CI-G	30-Jun-17	11:35	AAW	1710965	
205440-82-0 Total Meta Prepared General C	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine	Methods Metal Field Preserved; pH<2 confirmed 0.066		mg/l			1	methods SM4500-CI-G (11) ASTM D	30-Jun-17 09:38 28-Jun-17 10:00	11:35 29-Jun-17	AAW RLT	1710965 1711119	
205440-82-0 Total Meta Prepared General C	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01		mg/l pH Units	0.020	0.006	1	methods SM4500-CI-G (11) ASTM D 1293-99B	30-Jun-17 09:38 28-Jun-17 10:00	11:35 29-Jun-17 14:20 06-Jul-17	AAW RLT TN	1710965 1711119 1710957	
205440-82-0 Total Meta Prepared General C	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00		mg/l pH Units ppt (1000)	0.020	0.006	1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01)	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17	11:35 29-Jun-17 14:20 06-Jul-17	AAW RLT TN BD CMB	1710965 1711119 1710957 1711426	X
205440-82-0 Total Meta Prepared General C	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00 488		mg/l pH Units ppt (1000) mg/l	0.020 1.00 5.00	0.006 0.144 1.53	1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11)	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17	AAW RLT TN BD CMB	1710965 1711119 1710957 1711426 1711007	x x
205440-82-0 Total Meta Prepared General C 7782-50-5	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00 488 10.3		mg/l pH Units ppt (1000) mg/l mg/l	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00,	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17	AAW RLT TN BD CMB CMB	1710965 1711119 1710957 1711426 1711007 1711008	x x
205440-82-0 Total Meta Prepared General C 7782-50-5	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00 488 10.3		mg/l pH Units ppt (1000) mg/l mg/l	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00,	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17	AAW RLT TN BD CMB CMB	1710965 1711119 1710957 1711426 1711007 1711008	X X X
205440-82-0 Total Meta Prepared General C 7782-50-5 Microbiolo Subcontra	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 <1.00 488 10.3 7.18	рН	mg/l pH Units ppt (1000) mg/l mg/l mg/l	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00, 11)	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17 07-Jul-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17 07-Jul-17	AAW RLT TN BD CMB CMB RLT	1710965 1711119 1710957 1711426 1711007 1711008 1711573	X X X
205440-82-0 Total Meta Prepared General C 7782-50-5 Microbiolo Subcontra Prepared	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon ogical Analyses Fecal Coliforms cted Analyses	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00 488 10.3 7.18	pH O09, D	mg/l pH Units ppt (1000) mg/l mg/l mg/l CFU/100 ml	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00, 11)	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17 07-Jul-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17 07-Jul-17	AAW RLT TN BD CMB CMB RLT	1710965 1711119 1710957 1711426 1711007 1711008 1711573	X X X
205440-82-0 Total Meta Prepared General C 7782-50-5 Microbiolo Subcontra Prepared	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon ogical Analyses Fecal Coliforms cted Analyses by method NA	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 < 1.00 488 10.3 7.18	pH O09, D	mg/l pH Units ppt (1000) mg/l mg/l mg/l CFU/100 ml	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00, 11)	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17 07-Jul-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17 07-Jul-17	AAW RLT TN BD CMB CMB RLT	1710965 1711119 1710957 1711426 1711007 1711008 1711573	X X X
205440-82-0 Total Meta Prepared General C 7782-50-5 Microbiolo Subcontra Prepared Analysis per Subcontra	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon ogical Analyses Fecal Coliforms ceted Analyses by method NA erformed by GZA Geoenviror	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 <1.00 488 10.3 7.18 124	pH O09, D	mg/l pH Units ppt (1000) mg/l mg/l mg/l CFU/100 ml	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00, 11) SM 9222D-97	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17 07-Jul-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17 07-Jul-17	AAW RLT TN BD CMB CMB RLT	1710965 1711119 1710957 1711426 1711007 1711008 1711573 1710945	X X X
205440-82-0 Total Meta Prepared General C 7782-50-5 Microbiolo Subcontra Prepared Analysis per Subcontra	als by EPA 200/6000 Series by method General Prep- Preservation hemistry Parameters Total Residual Chlorine pH Salinity Total Solids Total Suspended Solids Total Organic Carbon ogical Analyses Fecal Coliforms ceted Analyses by method NA erformed by GZA Geoenviron Aquatic Toxicity ceted Analyses	Methods Metal Field Preserved; pH<2 confirmed 0.066 8.01 <1.00 488 10.3 7.18 124 see Report	pH O09, D Manchester,	mg/l pH Units ppt (1000) mg/l mg/l mg/l CFU/100 ml CT* - N/A	0.020 1.00 5.00 0.8	0.006 0.144 1.53 0.4	1 1 1 1 1 1	methods SM4500-CI-G (11) ASTM D 1293-99B SM 2520 (01) SM2540 B (11) SM2540D (11) SM5310B (00, 11) SM 9222D-97	30-Jun-17 09:38 28-Jun-17 10:00 06-Jul-17 29-Jun-17 07-Jul-17	11:35 29-Jun-17 14:20 06-Jul-17 05-Jul-17 30-Jun-17 07-Jul-17	AAW RLT TN BD CMB CMB RLT	1710965 1711119 1710957 1711426 1711007 1711008 1711573 1710945	X X X

Sample Identification Outfall 003 SC36392-01				Project # Chelsea		Matrix Surface Wa		llection Date 27-Jun-17 10			<u>ceived</u> Jun-17	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontracted Analyses Prepared by method 393336												
Analysis performed by Phoenix En	nvironmental Labs, Ir	nc. * - MACT(007									
Oil and Grease by EF	PA < 1.5		mg/L	1.5	1.5	1	E1664A		12-Jul-17	MACT0	393336A	ı

06:33

1664A

12-Jul-17 17:11 Page 13 of 14

Notes and Definitions

D Data reported from a dilution

O09 This sample was analyzed outside the EPA recommended holding time per client request.

QR5 RPD out of acceptance range.

SDUP Duplicate analysis confirmed surrogate failure due to matrix effects.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are

considered out of hold time at the time of sample receipt.

OG The required Matrix Spike and Matrix Spike Duplicate (MS/MSD) for Oil & Grease method 1664B can only be analyzed

when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method QC criteria. Please refer to Chain of Custody and QC Summary (MS/MSD) of the Laboratory Report to verify ample sample

volume was submitted to fulfill the requirement.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

LIV The initial volume for this sample has been reduced due to sample matrix and/or historical data therefore elevating the

reporting limit.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

A Division of GZA

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive Manchester, CT 06042 T: 860.643.9560 F: 860.646.7169 www.nebio.com

ACUTE AQUATIC TOXICITY TEST REPORT

Gulf Oil Terminal Chelsea, MA

Test Start Date:6/28/17
Test Period: June 2017
Report Prepared by:
New England Bioassay
A Division of GZA GeoEnvironmental, Inc. 77 Batson Dr.
Manchester, CT 06042
NEB Project Number: 05.0045469.00
Report Date: July 11, 2017
Report Submitted to:
Eurofins Spectrum Analytical, Inc.
11 Almgren Drive
Agawam, MA 01001
Sample ID: SC36391-01 / SC36392-01

This report shall not be reproduced, except in its entirety, without written approval of New England Bioassay (NEB). NEB is the sole authority for authorizing edits or modifications to the data contained in this report. Test results relate only to samples analyzed. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have any questions concerning these results.

Whole Effluent Toxicity Testing Report Instruction Form

Client Name/Project: Spectrum / Gulf Oil Terminal	Test Date:	6/28/17
Sample ID: SC36391-01 / SC36392-01		
Your results were as follows:		
Monitoring Only		
☐ Fail – Please proceed according to the instructions in	n your permit.	
□ Invalid – Retesting is still required. Retest report	will be sent at a	later date under separate cover.
□ Original Test Invalid – Valid retest performed. Bo	oth test and retes	t results are attached.
☐ Retesting will be or has been performed according of EPA-New England's species-specific, self-imple		
This is your case of dilution water to Protocols outlined in the attached copy of EPA-policy for alternate dilution water. The alternate dilution water water as follows: "synthetic laborate protocols, by adding specified amounts of salts into receiving water." Writing this letter should help you	-New England's lution water you story water made deionized water i	species-specific, self-implementing select for future tests for this species up according to EPA's toxicity tes n order to match the hardness of our
☐ Available information is insufficient to determine who to your permit limits. Please submit a current copy of the status of future tests results and help ensure your of the status of future tests.	f your permit to th	e NEB Lab so that we can determine

Please complete the items on this list before reporting these results according to the instructions in the "Monitoring and Reporting" Section of your permit.

- Please complete, sign and date the upper portion of the "Whole Effluent Toxicity Test Report Certification" page which is the page directly following this page.
- Fill in the Sample Type and Sample Method (upper right) and the Permit Limits (lower left) on the New England Bioassay EPA Toxicity Test Summary Sheet(s) if they are incomplete.
- Fill in any missing information on the NEB Chain-of-Custody documents. This includes ensuring that the following information is recorded: Sampler's name and title, Facility name and address, Sample collection methods, Sample collection start and end dates and times, Types of sample, Chlorination status of samples upon shipment to NEB, Site description and Sample collection procedures.
- Monitoring results should be summarized on your monthly Discharge Monitoring Report Form.
- Signed and dated originals of this report must be submitted to the State (and Federal) Agencies specified in the "Monitoring and Reporting" section of your permit.

Questions? Please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Permittee)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on	[Date]	[Authorized Signature]
		[Print or Type Name and Title]
		[Print or Type the Permittee's Name]
		[Print or Type the NPDES Permit No.]

Since the WET test and report check is complicated, the New England Bioassay Aquatic Toxicity Laboratory has certified the validity of the WET test data in the section below. Please note that this does not relieve the permittee from its responsibility to sign and certify the report under 40 C.F.R. S 122.41(k).

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

[Authorized Signature]

Kim Wills, Laboratory Manager [Print or Type Name and Title]

New England Bioassay

[Print or Type Name of Bioassay Laboratory]

24. Telephone Contacts

If you have questions, please contact Joy Hilton, Water Technical Unit, at (617) 918-1877 or David McDonald, Ecosystem Assessment Unit, at (617) 918-8609.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	Jil Terminal	Test Start Date:	6/28/17
	er: MA0001091	Outfall Number:	003
Toot Tyres	Test Succion	Camula Tama	Comple Mathed
Test Type	Test Species	Sample Type	Sample Method
X Acute	_ Fathead Minnow	Prechlorinated	X Grab
Chronic	_ Ceriodaphnia Dubia	Dechlorinated	Composite
_ Modified	_ Daphnia Pulex	_ Unchlorinated	_Flow-thru
(Chronic reporting	X Mysid Shrimp	Chlorinated	_ Other
LC50 values)	Sheepshead		
24-Hour Screening	Menidia		
	Sea Urchin	TRC conc. 0.125 mg	o/I .
	Selenastrum	11te conem	y . 2
	Other		
Dilution Water	Other	_	
	llested at a point immedia	ately upstream of or away fror	n the discharge
			ii tile tilscharge,
	ame and sampling locatio		
		d a hardness to generally refle	ct the characteristics
of the receiving water	er; (Surface water name:_)
_ Synthetic water prep	pared using either Millipo	ore Mill-Q or equivalent deion	ized water and
reagent grade chemi-	cals; or deionized water c	combined with mineral water;	
Artificial sea salts n	nixed with deionized water	er;	
Other			
-		_	
Effluent Sampling Dat	te(s): 6/27/17		
2	(s), <u> </u>		
Effluent Concentration	ns Tested (in%): 0 6	.25 12.5 25 50 100	
	it Concentration):		
(Fernit Lini	it Concentration).	monitoring only	
XV CCI / 1'''	11 4 10 37 10	1 1 1 20 25 24	
Was effluent salinity a	djusted? Yes If yes,	to what value? 25 ppt	
D.C. (F. 11)	. 1	D.C. T T A.	4 1 1 37 37 N
Reference Toxicant tes	st date: 6/1/1/	Reference Toxicant Test Acce	eptable: Yes X No _
4 1 A D	CT 10 1 1	22 24 110.55	' NED
Age and Age Range of	f lest Organisms 3 da	ys (< 24 hours) Source of Org	anisms <u>NEB</u>
	TECT DECLI TO	2-DEDMIT LIMITS	
		&PERMIT LIMITS	
	1est Accept	ability Criteria	
A C 41 41 TV 4 C	4 1		
A. Synthetic Water Co		Many Control Dec. 1. C	. NI/A
Mean Control Surviva		Mean Control Reproduction	
Mean Control Weight:	:N/A	Mean Control % Fertilizatio	n: <u>N/A</u>
B. Receiving Water Co	ontrol		
Mean Control Surviva	1:100%	Mean Control Reproduction	: N/A
Mean Control Weight:		Mean Control % Fertilizatio	
C. Lab Culture Contro	ol Ves No X		
C. Lab Culture Contro	1 163_ 110 <u>X</u>		
D. Thiogulfata Control	l Vog No V		
D. Thiosulfate Control	i ies_ No <u>x</u>		
	Ta-4 17	(aniahility)	
	<u>lest v</u>	ariability	
T4 DMOD (11)	NT/A		
Test PMSD (growth)	N/A		
Test PMSD (reproduct	tion.) <u>N/A</u>		

Permit Limits & Test Results

	Limits		<u>Results</u>			
LC50	N/A	LC50	>100%			
		Upper Value	±∞			
		Lower Value	100%			
		Data Analysis				
		Method Used	Graphical			
A-NOEC	N/A	A-NOEC	100%			
C-NOEC	N/A	C-NOEC	N/A			
		LOEC _	N/A			
IC25	N/A	IC25				
IC50	N/A	IC50				

PMSD Comparison Discussion - N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

Ideal concentration-response relationship
 All or nothing response
 Stimulatory response at low concentrations and detrimental effects at higher concentrations
 Stimulation at low concentrations but no significant effect at higher concentrations
 Interrupted concentration-response: significant effects bracketed by non-significant effects
 Interrupted concentration-response: non-significant effects bracketed by significant effects
 Significant effects only at highest concentration
 Significant effects at all test concentrations but flat concentration-response curve
 Significant effects at all test concentrations with a sloped concentration-response curve
 Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- X 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- 2. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	Oil Terminal	Test Start Date:	6/28/17
	er: MA0001091	Outfall Number:	003
Test Type	Test Species	Sample Type	Sample Method
		Prechlorinated	
X Acute	_ Fathead Minnow		X Grab
Chronic	_ Ceriodaphnia Dubia	_ Dechlorinated	_ Composite
Modified	_ Daphnia Pulex	Unchlorinated	Flow-thru
(Chronic reporting	_ Mysid Shrimp	Chlorinated	Other
LC50 values)	_ Sheepshead		
_ 24-Hour Screening	X Menidia		
	Sea Urchin	TRC conc. 0.125 m	g/L
	Selenastrum		
	Other		
Dilution Water	-		
	llected at a point immedia	ately upstream of or away from	n the discharge:
	ame and sampling location)
Alternate Surface W	later of known quality and	d a hardness to generally refle	ct the characteristics
	er; (Surface water name;		
Symthetic system man	named using sither Milling	ore Mill-Q or equivalent deion	izad water and
_ Symmetic water prej			izeu water and
0 0	· ·	ombined with mineral water;	
_	nixed with deionized water	er;	
_ Other		_	
Effluent Sampling Dat	te(s):6/27/17		
	· ·	<u>.25 </u>	
* (Permit Lim	it Concentration): mon	itoring only	
Was effluent salinity a	djusted? Yes If yes,	to what value? 25 ppt	
Reference Toxicant tes	st date: $\frac{6/1/17}{1}$ R	eference Toxicant Test Accep	table: Yes X No _
		and a factor of	
Age and Age Range of	f Test Organisms 10 days	(<24 hours) Source of Org	anisms <u>A.I.</u>
		&PERMIT LIMITS	
	Test Accept	ability Criteria	
A. Synthetic Water Co	ontrol		
Mean Control Surviva	1:97.5%	Mean Control Reproduction	: <u>N/A</u>
Mean Control Weight:	N/A	Mean Control % Fertilizatio	n: N/A
J			
B. Receiving Water Co	ontrol		
Mean Control Surviva		Mean Control Reproduction	· N/A
Mean Control Weight:		Mean Control % Fertilizatio	
Weight.	14/14	Wican Control /01 Citinzacio	11
C. Lab Culture Contro	l Yes No X		
C. Lab Culture Contro	1 105_ NO <u>X</u>		
D. Thiogulfoto Control	I Vac No V		
D. Thiosulfate Control		aniability.	
	1est v	ariability	
TADMOD (11)	NT/A		
Test PMSD (growth)	$\frac{N/A}{N/A}$		
Test PMSD (reproduct	tion.) <u>N/A</u>		

Permit Limits & Test Results

Limi	<u>its</u>	Results
LC50 N/A	LC50	>100%
	Upper Value	<u></u> ±∞
	Lower Value	100%
	Data Analysis	
	Method Used	Graphical
A-NOEC N/A	A-NOEC	100%
C-NOEC N/A	C-NOEC	N/A
	LOEC	N/A
IC25N/A	IC25	
IC50 N/A	IC50	

PMSD Comparison Discussion - N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

- X 1. Ideal concentration-response relationship2. All or nothing response
- 3. Stimulatory response at low concentrations and detrimental effects at higher concentrations
- _ 4. Stimulation at low concentrations but no significant effect at higher concentrations
- _ 5. Interrupted concentration-response: significant effects bracketed by non-significant effects
- 6. Interrupted concentration-response: non-significant effects bracketed by significant effects
- 7. Significant effects only at highest concentration
- 8. Significant effects at all test concentrations but flat concentration-response curve
- _ 9. Significant effects at all test concentrations with a sloped concentration-response curve
- _ 10. Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- X 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- 3. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

MYSIDOPSIS BAHIA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Mysidopsis bahia Acute Toxicity Test – Method 2007.0

Test Type: Acute Static Non-Renewal Saltwater Test

Salinity: 25 ppt \pm 10% for all dilutions by dry ocean salts (Instant Ocean)

Temperature: $25 \pm 1^{\circ}$ C

Light Quality: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL

Age of Test Organisms: 3 days

Number of Mysids

Per Test Chamber: 10

Number of Replicate Test

Chambers Per Treatment: 4

Total Number of Mysids

Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated *Artemia* nauplii while holding

prior to initiating the test.

Aeration: Aerated at <100 bubbles/minute

Dilution Water: Chelsea River

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement of body appendages on gentle prodding

Test Acceptability: $\geq 90\%$ survival of test organisms in control solution Yes X No

Sampling Requirements: Samples first used within 36 hours of collection Yes X No

Sample Volume Required: Minimum 2 liters

<u>Test Organism Source</u>: New England Bioassay

<u>Test Acceptability Criteria</u>: Mean Alternate Water Control Survival = <u>100%</u>

Mean Dilution Water Control Survival = 100%

Test Results:		Limits	Results
	48-hour LC50 Upper Value Lower Value Data Analysis Method Use A-NOEC	N/A d	$ \begin{array}{r} $
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range	NI Ne Ne	6/1/17 Dedium Dodecyl Sulfate EB Artificial Salt Water EW England Bioassay EW England Bioassay 17.7 mg/L ES
Dechlorination Procedures	: Chlorine is measured usin	g 4500 (CL-G DPD Colorimetric Method.
X Dechlorination was not red	quired.		
Since dechlorination of the e with sodium thiosulfate was dechlorinated sample. Chlorine measurement was mg/ L when measured by am	iffluent was necessary, a thic also included in the test series elevated in the effluent due aperometric titration.	es. Chlo e to inter	sample prior to test initiation. control of diluent water spiked orine was mg/L in a ference. Chlorine was <0.05 and was found to be mg/L.
			*

MENIDIA BERYLLINA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Menidia beryllina Acute Toxicity Test – Method 2006.0 **Test Method:**

Acute Static Non-Renewal Saltwater Test **Test Type**:

Salinity: 25 ppt \pm 2 ppt by adding dry ocean salts (Instant Ocean)

 25 ± 1 °C Temperature:

Light Quality. Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL/replicate

Age of Test Organisms: 10 days old (24 hour age range)

Number of Fish Per

Test Chamber: 10

Number of Replicate Test **Chambers Per Treatment: 4**

Total Number of Organisms Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated Artemia nauplii while holding

prior to initiating the test.

Aerated at <100 bubbles/minute **Aeration:**

Chelsea River **Dilution Water:**

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

48 hours **Test Duration:**

Effect measured: Mortality – no movement on gentle prodding.

Test Acceptability: \geq 90% survival of test organisms in control solution Yes X No

Yes X No Sampling Requirements: Samples first used within 36 hours of collection

Sample Volume Required: Minimum 2 liters

Test Organism Source: Aquatic Biosystems

Test Acceptability Criteria: Mean Alternate Water Control Survival = 97.5%

Mean Dilution Water Control Survival = 100%

Test Results:		Limits	Results	
	48-hour LC50 Upper Value Lower Value Data Analysis Method Use A-NOEC	N/A ed	$>100\%$ $\pm \infty$ 100% Graphical 100%	
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range	NEB A New Er Aquation 7.78	Dodecyl Sulfate rtificial Salt Water ngland Bioassay Biosystems mg/L	
Dechlorination Procedures	: Chlorine is measured usin	ng 4500 CL - G	DPD Colorimetric M	lethod.
\underline{X} Dechlorination was not red	quired.			
Sample was dechlorinated to Since dechlorination of the ewith sodium thiosulfate was dechlorinated sample. Chlorine measurement was mg/L when measured by amp	ffluent was necessary, a thicalso included in the test ser selevated in the effluent duperometric titration.	osulfate contries. Chlorine	ol of diluent water sp was mg/L in ce. Chlorine was<	iked a
				iig/L.
Additional Notes or Other	Conditions Affecting the	<u>l'est</u> :		
				-
				
<i>.</i>				

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM COVER SHEET FOR LC50 TESTS

CLIENT:	Eurofins Spec	ctrum Analytical		M.bahia TEST ID#	17-936a
ADDRESS:		gren Drive		M.beryllina TEST ID#	17-936b
	Agawam	, MA 01001		COC#	c37-2569
SAMPLE TYPE:		ninal Outfall 003		PROJECT#	05.0045469.00
DILUTION WATER:	Chels	ea River			
Sample Date(s):_	6/2	27/17	Received On:	6/28/1	7
INVEI	RTEBRATES		<u>v</u>	<u>'ERTEBRATES</u>	
TEST SET	UP (TECH INIT)	KO	T	EST SET UP (TECH INIT)	KW
TEST SET	TEST SPECIES	Mysidopsis bahia		TEST SPECIES	Menidia beryllina
	NEB LOT#	Mb17(6-25)		NEB LOT#	Ss17AI(6-27)
	AGE	3 days		AGE	10 days
TEST SOLUTION	N VOLUME (mls)	200	TEST SO	OLUTION VOLUME (mls)	700
NO. ORGANISMS PER T		10		AS PER TEST CHAMBER	10
NO ORGANISMS PER CO		40		PER CONCENTRATION	40
NO. ORGANISMS		40		ANISMS PER CONTROL	40
	DATE	TIME	5-1 F-2	DATE	TIME
TEST START:	6/28/17	1610	TEST START:	6/28/17	1604
TEST END:	6/30/17	1555	TEST END:	6/30/17	1605
		CD1027.22		Alkalinity (mg/L CaCO ₃₎	
	L WATER: NEB BATCH#	CRI037-22	Salinity (ppt) A	Alkalinity (mg/L CaCO ₃₎ 125	
	NEB BATCH#		25		0 TEST
RTIFICIAL SW:	NEB BATCH#		25	125	0 TEST 95% Confidence Limits
RTIFICIAL SW: RESULTS OF Mys METHOD	NEB BATCH#	LC50 TEST 95% Confidence	RESULTS OF A	125 Menidia beryllina LC5	95% Confidence
RTIFICIAL SW: RESULTS OF Mys METHOD INOMIAL/GRAPHICAL	NEB BATCH# sidopsis bahia 1 LC50 (%)	LC50 TEST 95% Confidence Limits	RESULTS OF A METHOD BINOMIAL/GRAPHICAL	125 Menidia beryllina LC5 LC50 (%)	95% Confidence Limits
RTIFICIAL SW: RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT	NEB BATCH# sidopsis bahia 1 LC50 (%)	LC50 TEST 95% Confidence Limits	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT	125 Menidia beryllina LC5 LC50 (%)	95% Confidence Limits
RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT PEARMAN KARBER	NEB BATCH# sidopsis bahia 1 LC50 (%) >100%	LC50 TEST 95% Confidence Limits	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER	125 Menidia beryllina LC5 LC50 (%) >100%	95% Confidence Limits
RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT PEARMAN KARBER	NEB BATCH# sidopsis bahia 1 LC50 (%)	LC50 TEST 95% Confidence Limits	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT	125 Menidia beryllina LC5 LC50 (%)	95% Confidence Limits
RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT PEARMAN KARBER IOAEL	NEB BATCH# sidopsis bahia 1 LC50 (%) >100%	250 TEST 95% Confidence Limits 100%±∞	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER NOAEL	125 Menidia beryllina LC5 LC50 (%) >100%	95% Confidence Limits
RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT PEARMAN KARBER TOAEL NOEC: NO OBSERVABI	NEB BATCH# sidopsis bahia 1 LC50 (%) >100% LE EFFECT C	250 TEST 95% Confidence Limits 100%±∞ ONCENTRATION	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER NOAEL	125 Menidia beryllina LC5 LC50 (%) >100%	95% Confidence Limits 100%±∞
	NEB BATCH# sidopsis bahia 1 LC50 (%) >100% LE EFFECT C	250 TEST 95% Confidence Limits 100%±∞ ONCENTRATION	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER NOAEL	125 Menidia beryllina LC5 LC50 (%) >100%	95% Confidence Limits 100%±∞
RESULTS OF Mys METHOD SINOMIAL/GRAPHICAL ROBIT PEARMAN KARBER JOAEL NOEC: NO OBSERVABI	NEB BATCH# sidopsis bahia 1 LC50 (%) >100% LE EFFECT C	250 TEST 95% Confidence Limits 100%±∞ ONCENTRATION	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER NOAEL	125 Menidia beryllina LC5 LC50 (%) >100%	95% Confidence Limits 100%±∞
RESULTS OF Mys METHOD INOMIAL/GRAPHICAL ROBIT PEARMAN KARBER OAEL IOEC: NO OBSERVABI	NEB BATCH# sidopsis bahia 1 LC50 (%) >100% LE EFFECT C	250 TEST 95% Confidence Limits 100%±∞ ONCENTRATION	RESULTS OF / METHOD BINOMIAL/GRAPHICAL PROBIT SPEARMAN KARBER NOAEL	125 Menidia beryllina LC5 LC50 (%) >100% 100%	95% Confidence Limits 100%±∞

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936a	Test Organism:	Mysidopsis bahi		nia
Project #:	05_0045469.00	Organism Age: _		3	
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	6/27/17	Beginning Date:	6/28/17	Time:	1610
Date Received:	6/28/17	Dilution Water So	ource: Chelsea Ri		River
Sample ID:	Outfall 003	Salinity:	27	DI	ot

Effluent Conc. %		umber o Survivin Irganisn	g	_	issolve Oxygen (mg/L)	-	Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	
Initials	0	TBP	КО	KO	TBP	PD	КО	TBP	PD	КО	TBP	PD	КО	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.6	5.8	4.7	24.0	25.4	25.2	7.8	7.9	7.7	25	25	25
Control B	10	10	10		5.3	4.0		25.7	25.3		7.9	7.6		25	25
Control C	10	10	10		5.4	3.8		25.6	25.5		7,9	7.6		25	25
Control D	10	10	10		5.2	3.8		25.7	25.3		7.9	7.6		25	25
Diluent A	10	10	10	7.8	5.4	3.8	24.0	25.6	25.4	7.8	7.7	7.4	27	27	27
Diluent B	10	10	10		4.9	3.6		25.6	25.5	0	7.6	7.4		27	27
Diluent C	10	10	10		4.9	3.3		25.7	25.5		7.6	7.4		27	27
Diluent D	10	10	10		4.9	3.7		25.8	25.5		7.6	7_4		27	27
6.25 A	10	10	10	7.9	5.4	4.2	24.3	25.6	25.4	7.7	7.7	7.5	27	27	27
6.25 B	10	10	10		4.9	3.8		25.7	25.5		7.7	7.4		27	27
6.25 C	10	10	10		4.8	3.5		25.6	25.5		7.6	7.4		27	27
6.25 D	10	10	10		4.8	3.4		25.6	25.6		7.6	7.4		27	27
12.5 A	10	10	10	7.8	5.1	3.4	24.3	25.6	25.6	7.7	7.7	7.4	26	27	27
12.5 B	10	10	10		5.0	3.3		25.5	25.5		7.7	7.4		27	27
12.5 C	10	10	10		5.0	3.9		25.5	25.4		7.7	7.5		27	27
12.5 D	10	10	10		4.9	3.4		25.6	25.6		7.6	7.4		26	27
25 A	10	10	10	7.6	5.7	4.6	24.2	25.5	25.3	7.8	7.8	7.6	26	27	27
25 B	10	10	10		5.9	4.6		25.6	25.2		7.8	7.6		26	27
25 C	10	10	10		4.9	3.8		25.6	25.3		7.7	7.5		26	27
25 D	10	10	10		5,0	3.8		25.7	25.5		7.7	7.5		26	27

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936a	Test Organism: _	Mysidopsis bahi		ahia	
Project #:	05.0045469.00	Organism Age:			days	
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)		
Date Sampled:	6/27/17	Beginning Date:	6/28/17	_Time: _	1610	
Date Received:	6/28/17	Dilution Water So	ource: Chelsea R		River	
Sample ID:	Outfall 003	Salinity:	27	pr	ot	

Effluent Conc. %	5	umber o Survivin rganisn	g	Dissolved Oxygen (mg/L)		Те	Temperature pH (°C) (su)					Salinity (ppt)			
Initials	0	TBP	ко	KO	TBP	TBP PD		TBP	PD	КО	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	10	7.7	5.8	4.7	24.2	25.6	25.3	7.8	7.9	7.7	26	26	26
50 B	10	10	10		4.7	3.8		25.6	25.3		7.8	7.7		26	26
50 C	10	10	10		5.2	3.9		25.5	25.3		7.9	7.7		26	26
50 D	10	10	10		5.2	3.9		25.7	25.5		7.9	7.7		26	26
100 A	10	10	10	7_4	5.7	4.6	24.2	25.6	25.4	7.9	8.0	7.9	25	25	26
100 B	10	10	10		4.1	3.4		25.7	25.5		7.9	7.8		25	25
100 C	10	10	10		5.1	3.8		25.6	25.4		8.0	7.9		25	25
100 D	10	10	10		5.3	4.2		25.7	25.5		8.0	7.9		25	26

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

50

100

10/10

10/10

10/10

10/10

10/10

10/10

Report Date:

11 Jul-17 10:38 (p 1 of 2) 17-936a | 15-1897-8539

Test Code: Mysidopsis 96-h Acute Survival Test New England Bioassay 07-1362-1656 Analysis ID: Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: 11 Jul-17 10:38 Analysis: Linear Interpolation (ICPIN) Official Results: Yes Batch ID: 12-8602-9855 Test Type: Survival (48h) Analyst: EPA/821/R-02-012 (2002) Diluent: Start Date: 28 Jun-17 16:10 Protocol: Receiving Water Ending Date: 30 Jun-17 15:55 Species: Mysidopsis bahia Brine: **Duration:** 48h Source: In-House Culture Age: 3d 1267C5E5 03-0879-0757 Client: Spectrum Analytical Sample ID: Code: Sample Date: 27 Jun-17 10:00 Material: Not Applicable Project: Gulf Oil Terminal (MA0001091) Receipt Date: 28 Jun-17 Source: Station: Sample Age: 30h **Linear Interpolation Options** X Transform Y Transform Seed Resamples Exp 95% CL Method Two-Point Interpolation Log(X) Linear 2115718 200 Yes **Point Estimates** % 95% LCL 95% UCL TU 95% LCL 95% UCL Level LC50 >100 n/a n/a n/a n/a 48h Survival Rate Summary Calculated Variate(A/B) Conc-% Code Count Mean Min Max Std Err **Std Dev** CV% %Effect A В 40 0 D 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 6.25 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 0.0000 12.5 4 1.0000 1.0000 1.0000 0.0000 0.00% 0.0% 40 40 4 40 40 25 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 50 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 100 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 48h Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 6.25 1.0000 1.0000 12.5 1.0000 1.0000 1.0000 1.0000 25 1.0000 1.0000 1.0000 1.0000 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 100 48h Survival Rate Binomials Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 10/10 10/10 10/10 10/10 6.25 10/10 10/10 10/10 10/10 10/10 10/10 10/10 12.5 10/10 25 10/10 10/10 10/10 10/10

10/10

10/10

Report Date: **Test Code:**

11 Jul-17 10:38 (p 2 of 2) 17-936a | 15-1897-8539

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID: Analyzed:

07-1362-1656 11 Jul-17 10:38 Endpoint: 48h Survival Rate

Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.9.2

Graphics

Analyst:_____ QA:___

50

100

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Report Date: Test Code:

11 Jul-17 10:38 (p 1 of 2) 17-936a | 15-1897-8539

New England Bioassay Mysidopsis 96-h Acute Survival Test 08-2671-9310 Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.2 Analysis ID: Nonparametric-Control vs Treatments Official Results: Analyzed: 11 Jul-17 10:38 Analysis: Yes Batch ID: 12-8602-9855 Test Type: Survival (48h) Analyst: Start Date: 28 Jun-17 16:10 Protocol: EPA/821/R-02-012 (2002) Diluent: Receiving Water Ending Date: 30 Jun-17 15:55 Species: Mysidopsis bahia Brine: **Duration:** 48h Source: In-House Culture Age: Sample ID: 03-0879-0757 Code: 1267C5E5 Client: Spectrum Analytical Sample Date: 27 Jun-17 10:00 Material: Not Applicable Project: Receipt Date: 28 Jun-17 Source: Gulf Oil Terminal (MA0001091) Station: Sample Age: 30h NOEL LOEL TOEL TU **Data Transform** Alt Hyp Angular (Corrected) C > T 100 > 100 n/a 1 Steel Many-One Rank Sum Test Critical DF P-Type P-Value Decision(α:5%) Control vs Conc-% **Test Stat Ties** 10 0.8333 Non-Significant Effect Dilution Water 6.25 18 1 6 Asymp 10 0.8333 12.5 18 1 6 Asymp Non-Significant Effect 25 18 10 1 6 Asymp 0.8333 Non-Significant Effect 50 18 10 1 6 Asymp 0.8333 Non-Significant Effect 100 18 10 1 6 Asymp 0.8333 Non-Significant Effect **ANOVA Table** DF Decision(a:5%) Source **Sum Squares** Mean Square F Stat P-Value 5 Significant Effect Between 0 0 65540 <1.0E-37 0 0 Error 18 0 23 Total 48h Survival Rate Summary 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Conc-% Code Count Mean 0.00% 0,00% 0 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 D 6.25 4 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 12.5 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 25 4 1.0000 1,0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 50 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 100 4 1.0000 **Angular (Corrected) Transformed Summary** Std Err CV% %Effect Count Mean 95% UCL Median Min Max Conc-% Code 95% LCL 0 D 1,412 1.412 0.00% 0.00% 4 1.412 1.412 1.412 1.412 0 4 1.412 1.412 1.412 1.412 0 0.00% 6.25 1.412 1.412 0.00% 12.5 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 1.412 25 4 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 50 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 4 1.412 0 0.00% 0.00% 100 1.412 1.412 1.412 1.412 1.412 48h Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 1.0000 1.0000 1.0000 1.0000 6.25 1.0000 1.0000 1.0000 1,0000 1.0000 12.5 1.0000 1,0000 1.0000 25 1.0000 1.0000 1.0000 1.0000

1,0000

1.0000

Report Date: Test Code:

11 Jul-17 10:38 (p 2 of 2) 17-936a | 15-1897-8539

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID:	08-2671-9310	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	11 Jul-17 10:38	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Angular	(Corrected)	Transformed	Detail
---------	-------------	-------------	--------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.412	1,412	1,412
6.25		1.412	1.412	1.412	1.412
12.5		1.412	1.412	1.412	1.412
25		1.412	1.412	1.412	1.412
50		1.412	1.412	1.412	1.412
100		1.412	1.412	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

Graphics

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936b	Test Organism: _	Me	enidia berylli	na
Project #:	05.0045469.00	Organism Age: _		10	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	6/27/17	Beginning Date:	6/28/17	Time: _	1604
Date Received:	6/28/17	Dilution Water So	urce:	Chelsea	River
Sample ID:	Outfall 003	Salinity:	27	Dt	ot

Effluent Conc. %		lumber o Survivin Organism	g	Dissolved Oxygen (mg/L)		Те	mperati (°C)	ure	pH (su)			Salinity (ppt)			
Initials	0	TBP	KO	KO	TBP	PD	КО	TBP	PD	KO	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	9	9	7.6	5.7	5.1	24.0	25.4	25.7	7.8	8.0	7.8	25	25	25
Control B	10	10	10		5.8	4.9		25.3	25.7		8.0	7.8		25	25
Control C	10	10	10		5.9	4.9		25.2	25.7		8.0	7.8		25	25
Control D	10	10	10		5.9	4.9		25.4	25.7		8.0	7.8		25	25
Diluent A	10	10	10	7.8	5.7	4.8	24.0	25.4	25.7	7.8	7.7	7.6	27	26	27
Diluent B	10	10	10		5.6	5.0		25.4	25.5		7.7	7.6		27	27
Diluent C	10	10	10		5.9	5.2		25.3	25.4		7.7	7.7		27	27
Diluent D	10	10	10		5.8	5.0		25.4	25.5		7.7	7.6		27	27
6.25 A	10	10	10	7.9	5.6	5.1	24.3	25.5	25.7	7.7	7.7	7.7	27	26	26
6.25 B	10	10	10		5.5	5.0		25.5	25.7		7.7	7.7		26	26
6.25 C	10	10	10		5.5	4.9		25.5	25.6		7.7	7.7		26	27
6.25 D	10	10	10		5.6	4.6		25.4	25.7		7.7	7.6		27	27
12.5 A	10	10	10	7.8	5.5	5.2	24.3	25.6	25.7	7.7	7.7	7.7	26	26	26
12.5 B	10	10	10		5.5	5.1		25.6	25.6		7.7	7.7		26	26
12.5 C	10	10	10		5.4	5.2		25.5	25.6		7.7	7.7		26	26
12.5 D	10	10	10		5.3	4.8		25.5	25.6		7.7	7.7		26	26
25 A	10	9	9	7.6	5.6	5.5	24.2	25.4	25.4	7.8	7.8	7.7	26	26	26
25 B	10	8	8		5.6	5.2		25.4	25.5		7.8	7.8		26	26
25 C	10	10	10		5.7	5.2		25.4	25.5		7.8	7.8		26	26
25 D	10	9	9		5.2	4.9		25.5	25.5		7.8	7.7		26	26

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936b	Test Organism:	Menidia beryllina
Project #:	05.0045469.00	Organism Age:	days
Facility Name:	Gulf Oil Terminal	Test Duration: 4	8 (hours)
Date Sampled:	6/27/17	Beginning Date:6/28	3/17 Time:1604
Date Received:	6/28/17	Dilution Water Source:	Chelsea River
Sample ID:	Outfall 003	Salinity:	27 ppt

Effluent Conc. %		lumber o Survivin Organisn	g	Dissolved Oxygen (mg/L)		Те	mperati (°C)	ure		pH (su)		Salinity (ppt)			
Initials	0	TBP	КО	KO			KO	TBP	PD	KO	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	9	7.7	5.7	5.2	24.2	25.3	25.4	7.8	7.9	7.9	26	26	26
50 B	10	10	10		5.6	4.9	1 = 1	25.3	25.4		7.9	7.8		26	26
50 C	10	10	10		5.3	5.0		25.4	25.4		7.8	7.8		26	26
50 D	10	10	10	1 7	5.2	4.9		25.5	25.5		7.8	7.8		26	26
100 A	10	10	10	7.4	5.5	5.1	24.2	25.2	25.4	7.9	8.0	8.0	25	25	25
100 B	10	10	10		5.4	5.2		25.3	25.3		8.0	8.0		25	25
100 C	10	10	10		5.4	5.3		25.3	25.3		8.0	8.0		25	25
100 D	10	10	10		5.5	5.3		25.3	25.3		8.0	8.0		25	25

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

Report Date: Test Code: 11 Jul-17 10:39 (p 1 of 2) 17-936b | 14-5186-2294

									ies	t Code:		17-9366 1	4-0100-22
Inland Silvers	side 96-h Acute	Survival 1	Test								N	ew Englan	d Bioass
Analysis ID:	00-5413-7171							CE	ΓIS Version	: CETISv1	.9.2		
Analyzed:	11 Jul-17 10:3	39 A r	nalysis:	Nonparametric-Control vs Treatments				Offi	cial Result	s: Yes			
Batch ID:	16-6034-2378	Te	st Type:	Survival (48h)				Ала	ılyst:				
Start Date:	28 Jun-17 16:0						-012 (2002)			Diluent: Receiving Water			
Ending Date:	30 Jun-17 16:0					a			Brine:				
Duration:	48h					re			Age	: 10	d		
Sample ID:	10-6666-1888	0-6666-1888 Code:			3F93F800				Clie	ent: Sp	ectrum Analy	/tical	
Sample Date:	27 Jun-17 10:00 Material:			Not Applicable				Pro	ject:				
Receipt Date:	: 28 Jun-17					al (MA0	0010	91)					
Sample Age:	30h	St	ation:										
Data Transfor	rm	Alt Hyp)						NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)	C > T							100	> 100	n/a	1	6.72%
Steel Many-O	ne Rank Sum 1	Test											
Control	vs Conc-%		Test S	Stat	Critical	Ties	DF	P-Type	P-Value	Decision	n(a:5%)		
Dilution Water	6.25		18		10	1	6	Asymp	0.8333	Non-Sign	nificant Effec	1	
	12.5		18		10	1	6	Asymp	0.8333	Non-Sigr	nificant Effect	t	
	25		12		10	1	6	Asymp	0.1424	Non-Sigr	nificant Effect	t	
	50		16		10	1	6	Asymp	0.6105	Non-Sigr	nificant Effect	t	
	100		18		10	1.	6	Asymp	0.8333	Non-Sigr	nificant Effect	t	
ANOVA Table													
Source	Sum Squ	uares	Mean	Squa	are	DF		F Stat	P-Value	Decision	ι(α:5%)		
Between	0.079866	5	0.0159	9732		5		4,323	0.0093	Significa	nt Effect		
Error	0.066502	26	0.0036	3946		18							
Total	0.146369)				23							
Distributional	l Tests												
Attribute	Test	Test				Test S	itat	Critical	P-Value	Decision	n(a:1%)		
Variances	Levene E	Levene Equality of Variance Test				3.608		4.248	0.0195	Equal Va	riances		
Variances	Mod Leve	Mod Levene Equality of Variance Test				1_723		4.248	0.1804	Equal Va	ıriances		
Distribution	Shapiro-\	Shapiro-Wilk W Normality Test				0.657	t	0.884	2.9E-06	Non-Nor	mal Distributi	ion	
48h Survival I	Rate Summary												
Conc-%	Code	Count	Mean		95% LCL				Min	Max	Std Err	CV%	%Effec
0	D	4	1.0000		1.0000	1_0000		1.0000	1.0000	1,0000	0.0000	0.00%	0.00%
6.25		4	1.0000		1,0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12.5		4	1.0000		1.0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
25		4	0.9000)	0.7701	1.0000)	0.9000	0.8000	1,0000	0.0408	9.07%	10.00%
50		4	0.9750)	0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
100		4	1.0000)	1.0000	1_0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
Angular (Corr	rected) Transfo	rmed Sum	mary										
Conc-%	Code	Count	Mean		95% LCL	95% L	ICL	Median	Min	Max	Std Err	CV%	%Effec
0	D	4	1.412		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
		4	1.412		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
			4 440		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
12.5		4	1.412										
6.25 12.5 25		4 4	1.254		1.056	1_453		1.249	1.107	1.412	0_06231	9.93%	
12.5											0.06231 0.04074		11.17% 2.89% 0.00%

Report Date:

11 Jul-17 10:39 (p 2 of 2) 17-936b | 14-5186-2294

					E .	Test Code:	17-936b 14-5186-2294
Inland Silver	side 96-h Acute S	urvival T		New England Bioassay			
Analysis ID:	00-5413-7171	En	dpoint: 48	8h Survival F	Rate	CETIS Version:	CETISv1.9.2
Analyzed:	11 Jul-17 10:39	•			c-Control vs Treatments	Official Results:	Yes
48h Survival	Rate Detail						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	1.0000	1.0000	1,0000	1,0000		
6.25		1.0000	1.0000	1,0000	1,0000		
12.5		1.0000	1.0000	1.0000	1.0000		
25		0.9000	0.8000	1.0000	0.9000		
50		0.9000	1.0000	1.0000	1.0000		
100		1.0000	1.0000	1.0000	1.0000		
Angular (Cor	rected) Transforr	ned Deta	il				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	1.412	1.412	1.412	1.412		
6.25		1.412	1,412	1.412	1.412		
12.5		1.412	1.412	1.412	1.412		
25		1.249	1.107	1.412	1.249		
50		1.249	1.412	1.412	1.412		
100		1.412	1.412	1.412	1.412		
48h Survival	Rate Binomials						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	10/10	10/10	10/10	10/10		
6.25		10/10	10/10	10/10	10/10		
12.5		10/10	10/10	10/10	10/10		
25		9/10	8/10	10/10	9/10		
50		9/10	10/10	10/10	10/10		
100		10/10	10/10	10/10	10/10		

Graphics

CETIS Analytical Report

Report Date: Test Code: 11 Jul-17 10:40 (p 1 of 2) 17-936b | 14-5186-2294

												1 1 0 100 EEC
Inland Sil	versi	de 96-h Acute S	urvival Te	st						N	ew Engla	and Bioassa
			48h Survival Ra Linear Interpola		۷)		TIS Version		.9.2			
Batch ID: 16-6034-2378 Test Type:		pe: Survival (48h) bl: EPA/821/R-02-012 (2002)			Dil	Analyst: Diluent: Receiving Water Brine:						
		In-House Cultu	lture Age: 10d									
Sample ID: 10-6666-1888 Code: 3F93F800				Cli	ent: Sp	ectrum Analy	/tical					
-		27 Jun-17 10:00	Mat	erial:	Not Applicable			Pro	oject:			
Receipt D				rce:	Gulf Oil Termin	il Terminal (MA0001091)						
Sample A	ge: 3	30h	Stat	ion:								
Linear Int	erpol	ation Options										
X Transfo	rm	Y Transform	See		Resamples	Exp 95%		ethod				
Log(X)		Linear	1624	4003	200	Yes	Tw	o-Point Inte	rpolation			
Point Esti	mate	S										
Level %		95% LCL	95% UCL	TU	95% LCL	95% UCI	-					
LC50 >	100	n/a	n/a	<1	n/a	n/a						
48h Survival Rate Summary			Calculated Variate(A/E			riate(A/B)						
Conc-%		Code	Count	Mean		Max	Std Err			%Effect	Α	В
)		D	4	1.000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
6.25			4	1.000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
12.5			4	1,000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
25			4	0.900		1.0000 1.0000	0.0408 0.0250	0.0817 0.0500	9.07% 5.13%	10.0% 2.5%	36 30	40 40
50 100			4	0.975 1.000		1.0000	0.0230	0.0000	0.00%	0.0%	39 40	40
48h Survi	val Ra	ate Detail										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4						
)		D	1,0000	1.000		1.0000						
5.25			1,0000	1.000	0 1.0000	1.0000						
12.5			1,0000	1,000		1,0000						
25			0.9000	0.800	0 1.0000	0.9000						
50			0.9000	1,000	0 1.0000	1,0000						
100			1.0000	1.000	0 1.0000	1.0000						
18h Survi	val Ra	ate Binomials										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4						
)		D	10/10	10/10	10/10	10/10						
5.25			10/10	10/10	10/10	10/10						
12.5			10/10	10/10	10/10	10/10						
25			9/10	8/10	10/10	9/10						
50			9/10	10/10	10/10	10/10						
100			10/10	10/10	10/10	10/10						

CETIS Analytical Report

Report Date:

11 Jul-17 10:40 (p 2 of 2)

Test Code:

17-936b | 14-5186-2294

Inland Silverside 96-h Acute Survival Test

New England Bioassay

Analysis ID: Analyzed:

17-5418-9503 11 Jul-17 10:39

Endpoint: 48h Survival Rate

Analysis: Linear Interpolation (ICPIN) **CETIS Version:** CETISv1.9.2

Official Results: Yes

Graphics

INITIAL CHEMISTRY INFORMATION

 CLIENT:
 Gulf Oil Terminal - 003

 PROJECT #
 05.0045469.00

RECIEPT DATE	6/28/17				
SAMPLE	Effluent	Receiving Water			
COC#	C37-2568	C37-2569			
Temperature (°C)	6.4	9.1			
Dissolved Oxygen (mg/L)	7.6	9.6			
pH (standard units)	6.8	7.7			
Conductivity (µmhos/cm)	860	42,800			
Salinity (ppt)	<1	27			
Hardness (as mg/L CaCO3)	126	4800			
Alkalinity (as mg/L CaCO3)	85	95			
TRC - DPD (mg/L)	0.125	0.024			
INITIALS	СВ	СВ			

Additional notes:	

NEB SALTWATER SPEC 3 ACCLIMATION RECORD

C			
Species: Client: Osery Utweet Took ID.	Client:	Quantity:	*Mortality upon arrival
	lest ID.		
Source	14# Gen 45/100	.000	~
- T - T - T	(12 9) (17) (SC 14)	שת נייני שלו ה	7
Have the marcards		9 days on 6-27-17	* Mortality > 10% - Notify management
Allowable Mortality: > 5% mortality = Notify management	ntify management	フ	

> 5% mortality = Notify management. Allowable Mortality:

Fish = No more than 50% tank volume water change over a 12 (twelve) hour period. Allowable Acclimation:

Mysids = Need to be +/- 2 ppt of test dilution water.

	Comments / Treatment type		Accumented to ASW. 6 L. ASW HZO A 6 L. ASW HZO A 6 L. ASW A Samuty quadwally adjusted to 15900.
	Mortalities	# of dead organisms removed from tank	F (O 0 0
Observations	Do organisms look stressed?	Yes / No	No No No
Obser	Behavioral observations	A = Normal, B = Erratic mov. C = Dead	X X X
	Feedings	AM NOON PM	4+ AT MG 50 500 MC 4= 51P 51P AT 51P 51P AT
	Sal. (ppt) **		52 22 25
	Alkal. (mg/L) ml titrant		20 ml 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
try	Temp. (C) *		22.7
Water Chemistry	p.H. (SU)	n V	8. 1
Water	D.O. (mg/L)		35 - 1 35
	Date	2	Sect 30

SUBCONTRACT ORDER

SC36391

Spectrum Analytical

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc. - Manchester, CT

77 Batson Drive Manchester, CT 06042 Phone: (860) 286-8900 Fax: (860) 242-8389

Project #: Gulf Chelsea

PO Number: SC36391

BILL TO:

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC36391

Laboratory ID	Sample ID	Sampled	Matrix	Analysis	Due	Comments
	SC36391-01	27-Jun-17 10:00	Surface Water	Aquatic Tox	14-Jul-17 16:00	Client ID is Chelsea Creek/LC50
Containers Supplied: Other (J)				037	-2569	

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify <u>SpectrumLabResults@EurofinsUS.com</u> immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

Received ON ICE

Released By

Date

Received By

Temp °

Released By Date Received By Date

SUBCONTRACT ORDER

Spectrum Analytical

SC36392

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc. - Manchester, CT*

77 Batson Drive

Manchester, CT 06042 Phone: (860) 286-8900 Fax: (860) 242-8389 **BILL TO:**

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike

Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC36392

Project #:

Sampled

Gulf Chelsea SC36392

PO Number:

8036303.01 37

Sample ID

SC36392-01 27-Jun-17 10:00

Matrix
Surface Water

Aquatic Tox

Analysis

14-Jul-17 16:00

Due

Client ID is Outfall

Comments

003/LC50

Containers Supplied:

Laboratory ID

Other (L)

C37-2568

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify <u>SpectrumLabResults@EurofinsUS.com</u> immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

Received ON ICE

Released By

Date

eceived By

Date

Temp °C

Released By

Date

Received By

Date

New England Bioassay Reference Toxicant Data: *Mysidopsis bahia* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: July 2015 - July 2017

× LC50	Mean LC50	± 2 SD

								CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th & 90th%
15-900	7/2/2015	18.3	18.3	2.8	12.7	23.9	0.15	0.26
15-1082	8/3/2015	17.7	18.3	2.4	13,5	23.1	0.13	0.26
15-1296	9/1/2015	17.7	18.2	2.4	13.4	23.0	0.13	0.26
15-1458	10/1/2015	17,1	18.2	2.4	13.5	23.0	0.13	0.26
15-1687	11/2/2015	22.5	18.1	2,5	13.1	23.2	0.14	0.26
15-1776	12/1/2015	21.8	18.4	2.3	13.8	23.0	0.13	0.26
16-34	1/4/2016	18.4	18.3	2.3	13.7	22.9	0.12	0.26
16-142	2/1/2016	17.1	18,3	2.3	13.7	22.8	0.12	0.26
16-338	3/8/2016	16.1	18.2	2.3	13.6	22.9	0.13	0.26
16-460	4/1/2016	16.9	17.9	2.3	13.2	22.5	0.13	0.26
16-600	5/2/2016	15.4	17.8	2.0	13.7	21.8	0.11	0.26
16-709	6/1/2016	19.6	17.9	2.0	13.8	22.0	0.11	0.26
16-849	7/1/2016	21.7	18.3	2.2	13.8	22.7	0.12	0.26
16-1058	8/1/2016	16.3	18.2	2.0	14.1	22.2	0:11	0.26
16-1256	9/7/2016	17.6	18.2	2.0	14.1	22.3	0.11	0.26
16-1471	10/5/2016	15.5	17.9	2.1	13.7	22.1	0.12	0.26
16-1590	11/1/2016	19.6	18.0	2.0	14.0	22.1	0.11	0.26
17-9	1/3/2017	20.3	18.2	2.1	14.0	22.4	0.11	0.26
17-154	2/1/2017	17.7	18.3	2.1	14.1	22.4	0.11	0.26
17-273	3/1/2017	20.3	18.4	2.1	14.3	22.5	0.11	0.26
17-479	4/4/2017	17.7	18.4	2.1	14.2	22.5	0.11	0.26
17-697	5/10/2017	18.0	18.4	2.1	14.2	22.5	0.11	0.26
17-776	6/1/2017	17.7	18.4	2.1	14.2	22.5	0.11	0.26
17-977	7/5/2017	19,3	18.5	2.1	14.3	22.6	0.11	0.26

New England Bioassay Reference Toxicant Data: *Menidia beryllina* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: June 2015 - June 2017

Δ	LC50	—— Mean LC50	+/- 2 STD	
			CV National	CV National

								CV Hational	CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th%	90th%
15-705	6/3/2015	8.7	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-901	7/2/2015	8.1	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-1083	8/6/2015	8.7	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-1297	9/2/2015	8.4	8.4	0.3	7.8	9.0	0.03	0.21	0.44
15-1539	10/1/2015	7.8	8.4	0.3	7.7	9.0	0.04	0.21	0.44
15-1688	11/3/2015	8.1	8.3	0.3	7.7	9.0	0.04	0.21	0.44
15-1825	12/3/2015	8.1	8.3	0.3	7.7	8.9	0.04	0.21	0.44
16-108	1/20/2016	7.8	8.3	0.3	7.6	8.9	0.04	0.21	0.44
16-260	2/23/2016	7.5	8.3	0.4	7.6	9.0	0.04	0.21	0.44
16-303	3/1/2016	7.8	8,3	0.4	7.5	9.0	0.04	0.21	0.44
16-461	4/1/2016	8.7	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-602	5/5/2016	8.3	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-798	6/15/2016	8.7	8.2	0.4	7.5	9.0	0.04	0.21	0.44
16-850	7/1/2016	7.8	8.2	0,4	7.5	8.9	0.04	0.21	0.44
16-1060	8/3/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1282	9/8/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1705	11/29/2016	8.4	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1739	12/1/2016	8.6	8.2	0.3	7.5	8.9	0.04	0.21	0.44
17-83	1/17/2017	8.1	8.2	0.3	7.5	8.9	0.04	0.21	0.44
17-155	2/1/2017	7.3	8.2	0.4	7,4	8.9	0.05	0.21	0.44
17-278	3/1/2017	8.5	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-595	4/26/2017	8.4	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-758	5/30/2017	8.7	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-777	6/1/2017	7.8	8.2	0.4	7.4	9.0	0.05	0.21	0.44
	15-705 15-901 15-1083 15-1297 15-1539 15-1688 15-1825 16-108 16-260 16-303 16-461 16-602 16-798 16-850 16-1060 16-1282 16-1705 16-1739 17-83 17-155 17-278 17-595 17-758	15-705 6/3/2015 15-901 7/2/2015 15-1083 8/6/2015 15-1297 9/2/2015 15-1539 10/1/2015 15-1688 11/3/2015 15-1825 12/3/2015 16-108 1/20/2016 16-260 2/23/2016 16-303 3/1/2016 16-461 4/1/2016 16-602 5/5/2016 16-798 6/15/2016 16-798 6/15/2016 16-1060 8/3/2016 16-1282 9/8/2016 16-1282 9/8/2016 16-1705 11/29/2016 16-1705 11/29/2016 16-1739 12/1/2016 17-83 1/17/2017 17-155 2/1/2017 17-278 3/1/2017 17-595 4/26/2017	15-705 6/3/2015 8.7 15-901 7/2/2015 8.1 15-903 8/6/2015 8.7 15-1297 9/2/2015 8.4 15-1539 10/1/2015 7.8 15-1688 11/3/2015 8.1 15-1825 12/3/2015 8.1 16-108 1/20/2016 7.8 16-260 2/23/2016 7.5 16-303 3/1/2016 7.8 16-461 4/1/2016 8.7 16-602 5/5/2016 8.3 16-798 6/15/2016 8.7 16-850 7/1/2016 7.8 16-1060 8/3/2016 8.7 16-1282 9/8/2016 8.7 16-1705 11/29/2016 8.4 16-1739 12/1/2016 8.6 17-83 1/17/2017 8.1 17-155 2/1/2017 7.3 17-278 3/1/2017 8.5 17-595 4/26/2017 8.4 17-758 5	15-705 6/3/2015 8.7 8.4 15-901 7/2/2015 8.1 8.4 15-1083 8/6/2015 8.7 8.4 15-1297 9/2/2015 8.4 8.4 15-1539 10/1/2015 7.8 8.4 15-1688 11/3/2015 8.1 8.3 15-1825 12/3/2015 8.1 8.3 16-108 1/20/2016 7.8 8.3 16-260 2/23/2016 7.5 8.3 16-303 3/1/2016 7.8 8.3 16-461 4/1/2016 8.7 8.3 16-602 5/5/2016 8.3 8.3 16-798 6/15/2016 8.7 8.2 16-1060 8/3/2016 8.7 8.2 16-1282 9/8/2016 8.7 8.2 16-1705 11/29/2016 8.4 8.2 16-1739 12/1/2017 8.1 8.2 17-83 1/17/2017 8.1 8.2 17-278<	15-705 6/3/2015 8.7 8.4 0.3 15-901 7/2/2015 8.1 8.4 0.3 15-1083 8/6/2015 8.7 8.4 0.3 15-1297 9/2/2015 8.4 8.4 0.3 15-1539 10/1/2015 7.8 8.4 0.3 15-1688 11/3/2015 8.1 8.3 0.3 15-1825 12/3/2015 8.1 8.3 0.3 16-108 1/20/2016 7.8 8.3 0.3 16-260 2/23/2016 7.5 8.3 0.4 16-303 3/1/2016 7.8 8.3 0.4 16-602 5/5/2016 8.7 8.3 0.4 16-798 6/15/2016 8.7 8.2 0.4 16-1060 8/3/2016 8.7 8.2 0.4 16-1705 11/29/2016 8.7 8.2 0.4 16-1739 12/1/2017 8.1 8.2 0.3 17-83 1/1	15-705 6/3/2015 8.7 8.4 0.3 7.8 15-901 7/2/2015 8.1 8.4 0.3 7.8 15-1083 8/6/2015 8.7 8.4 0.3 7.8 15-1297 9/2/2015 8.4 8.4 0.3 7.8 15-1539 10/1/2015 7.8 8.4 0.3 7.7 15-1688 11/3/2015 8.1 8.3 0.3 7.7 15-1825 12/3/2016 7.8 8.3 0.3 7.7 16-108 1/20/2016 7.8 8.3 0.3 7.6 16-260 2/23/2016 7.5 8.3 0.4 7.6 16-303 3/1/2016 7.8 8.3 0.4 7.5 16-461 4/1/2016 8.7 8.3 0.4 7.5 16-602 5/5/2016 8.3 8.3 0.4 7.5 16-798 6/15/2016 8.7 8.2 0.4 7.5 16-1282 <t< td=""><td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 16-602 5/5/2016 8.7 8.3 0.4 7.5 9.0 16-798 6/15/2016 8.7 8.2 0.4<!--</td--><td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7</td><td>Test ID Date LC₈₀ Mean LC₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016</td></td></t<>	15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 16-602 5/5/2016 8.7 8.3 0.4 7.5 9.0 16-798 6/15/2016 8.7 8.2 0.4 </td <td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7</td> <td>Test ID Date LC₈₀ Mean LC₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016</td>	15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7	Test ID Date LC ₈₀ Mean LC ₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016

Page 1 of 1 Invoice To: Christopher Gill Gulf Oil LP 80 William St, Suite 400 Wellesley, MA 02481-3705 Vellesley, MA 02481-3705 Vellesley, MA 02481-3705 Sampler(s): P.O.No. Onote/RQN: P.O.No. List Preservative Code I	Date: Ime: # # # #	1000 G SW 1 ×	Soll Stronge N2= N3= C=Compsite C=Compsite Time: Type Matrix = of VOA Vials # of Clear Glass # of Plastic × Ammonia
tered 1=Na ₅ S2O ₅ 2 HCl 3-H ₂ SO ₄ 4-HNO ₅ 5-NaOH 6 Ascorbic Acid	Ming Water GW=Groundwater SW=Surface Water WW=Waste Water SO Soil SI_Sludge A=Indoor/Ambient Air SG=Soil Gas SI_Sludge A=Indoor/Ambient Air SG=Soil Gas X2=	so Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas SO Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas Somple ID: C=Compsite Type Matrix = of VOA Vials # of Clear Glass # of Plastic X Ammonia TRC, salinity, pH. TS, TSS BTEX & naphthalene PAHs TOC Total Recov. (Cd, Cu, Pb, Ni, Zn)* LC50 Check if chlorinated	inking Water GW=Groundwater SW=Surface Water WW=Waste Water A=Indoor/Ambient Air SG=Soil Gas
8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ H= none 3 11 2 11 10 4 Analysis Analysis	Type Matrix Type Matrix ToC Total Ph, N LC50	G. Grab Sample ID: Time: Type SW Matrix = of VO # of Am # of Cle TRC, s TSS BTEX PAHs TOC Total Pb, N LC50	NI NI SI SINGER NI SI SI SINGER NI SI
8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 10=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 11=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 12=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 13=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 14=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 15=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II=		Sample ID: Date: 1 1 X	C=Compsite Type Matrix of VO.
NaHSO ₄ 9=Deinnized Watter 10=H ₃ PO ₄ II= none Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas X2=	Chelsea Creek		Chelsea Creek
Re NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 9 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 10 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 11 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 12 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 13	Chelsea Creek 6-71 1000 G SW 3 X X X X X X X X X X X X X X X X X X	77 1000 6 SW 3 X	Chelsea Creek 6-71 1000 G SW 3
ge Waler (C. Grab Surface Water WW=Waste Water W	Chelsea Creek 6-71 1000 G SW 3 X X Chelsea Creek 6-71 1000 G SW 3 X X X X X X X X X X X X X X X X X X	6-27 1000 6 sw 3	Chelsea Creek 6-71 1000 G SW 3 Chelsea Creek 6-71 1000 G SW 3 Chelsea Creek 6-71 1000 G SW 1
By Walter G.WGroundwater 10-H.pO ₄ H= none St. Sludge A=Indoor/Ambient Air SG-Soil Gas So. Soil St. Sludge A=Indoor/Ambient Air SG-Soil Gas Celsea Creek Chelsea Cre	Chelsea Creek 671 1000 G SW 1 X X G G Chelsea Creek 671 1000 G SW 3 X X G G G G G G G G G G G G G G G G G	6-27 1000 6 sw 3	Chelsea Creek
By Walto GW-Groundwater SW-Surface Water WW-Waste Water GG Soil St. Sludge A-Indoor/Ambient Air SG Soil Gas SO Soil St. Sludge A-Indoor/Ambient Air SG Soil Gas X2-	Chelsea Creek	6-21 1000 6 SW 3	Chelsea Creek
Soul SI Sludge A Indoor/Ambuent Au SG Sulface Water Wa	Chelsea Creek Ch		Chelsea Creek
By Walter GW-Groundwater SW-Surface Water WW-Waste Water Stample ID: Sample ID: Chelsea Creek	Chelsea Creek Ch		Chelsea Creek
## ## ## ## ## ## ## ## ## ## ## ## ##	Chelsea Creek	helsea Creek L71 1000 G SW 3 X X A helsea Creek L71 1000 G SW 1 X X IIII helsea Creek L71 1000 G SW 2 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII hel	Chelsea Creek

12
36
392
/

1	1	Mark	(AXC	Reliphylshedry)		(12						3639201	Lab JD;	G= Grab	NI=	SO=Soil	DW-Dinking Water		F=Field Filtered 1=Na 7=CH3OH 8=NaHSO ₄	Project Mgr:	Telephone #	Chelsea, MA 02150	281 Eastern Ave	Gulf Oil LP	Report To: Andrew Adams	SPECTRUM AI Fee HANIBAL I	1,
	1	2	B	City				Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Sample ID:	5	320	SL=Sludge A=Indoor/Ambient Au	GW=Groundwater SW=		1=Na ₂ S2O ₃ 2=HCl 3 H ₂ SO ₄ SO ₄ 9=Deionized Water 10=H ₁ PO ₄	Andrew Adams	617.884.5980	2150	Ve			SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	
		MAN	nen	Received by:				6-27	6-27	6-77	6-29	1.2.9	1.2-9	12-9	Dates	C=Compsite	2	SC	SW=Surface Water W		4=HNO ₃								
		B	XX	d by:				(000)	1000	1000	1000	(000)	1000	1000	Time:	Ге		off Gaw	ww=Waste Water		NaOH none	P.O No.		1.2	1=		Invoice To: Christopher Gill		CHAIN OF CUSTODY RECOR
								G	G	G	G	G	G	G	T	ype					6=Ascorbic Acid			Wellesley, MA 02481-3705	80 William St, Suite 400	Gulf Oil LP	Christop	7	0
	1	101	5					WS	WS	WS	WS	WS	WS	WS		atrix			-		c Acid			y, MA C	am St, S	P	her Gill	Page	FC
	1	10	1/8/2	Date:				72			3					VOA								2481-3	uite 400			1 0	SU
		1	7						+	-	+	-	-		-	Ambe			Containers			Quote/RQN		705					TO
		500	1:00	Time:					4				_			Plasti	-		iners			Ž						2	DYI
No.	Course	Correct	Constant of the second	Te										×	Amı	monia				3									RECO
5	o Di	On Procher	2	Temp °C									×		TRO		uity, į	pH, TS,		=	1	'		1	1	,	'		ORI
	Condu											×			0&0	G				63	ist Pres								0
mbient	ion upo		E-mail to:	EDD format:							×				TBA			a-lene,	Analysis	2	ervativ		Sampler(s):	Location:	SHE INAHE.	Cita Nam	Project No:		
Ambient leed	Condition upon receipt			mat							×				Viny		ride,	MTBE -	sis	11	List Preservative Code below:	î	s):	ı	1		60:		
			adams@							×				_				l phenol ^s		=	below:							S _a	St.
Refrigerated	Custody Seals		gulfoil.c						×	-					TOO	al Coli	form		+	10 4			3	281 Eas	1			TATs s n. 24-h mples di	sh TAT
			om, cgill			П		×									chlo	rinated		1			2000	tern Av	G	0		notifica sposed a	Speci FAT - 7
☐ Dì VOA Frozen ☐ Soil Jar Frozen	□ Present □ Intact □ Broken		aadams@gulfoil.com, egill@gulfoil.com					Group 2 PAHs - 5 µg/L	Group 1 PAHs - 0.1 µg/L	ethanol - 400 µg/L	naphthalene and vinyl chl - 5 µg/L	BTEX - 2 µg/L; TBA - 10 µg/L;	Required Minimum Levels:	* Report phenol down to MDL	State-specific reporting standards		☐ ASP A* ☐ ASP B*	No QC	MA DEP MCP CAM Report? LI Yes LI No	anumonal charges may applying	QA/QC Reporting Notes:		1	Chelsea	Gui Cheisea Feirillai	Cholcoa Terminal	Gulf Chelsea	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed:

Featuring TANIBAL TECHNOLOGY	PECTRUM ANALYTICAL	1	2	
*	INC.			

CHAIN OF CUSTODY RECORD

		6392
SISTAT - 7 to 10 h	Special Har	J Du
sylphese days	idling:	P

Rush TAT - Date Needed:

4	1	2	1 de	Reling	١						(2)	101000	36397.1	Lab ID:	G=	=1X	O=Oil SO=Soil	DW-Dinking Water		F=Field Filtered 1 7=CH3OH 8=NaH8	1	Telephone #:	Chelsea, MA 02150	281 Eastern Ave	Gulf Oil LP	Report To: Andrew Adams	SPECTRUN
0	2	3	Coll .	Reliaquished by:7								Outfall 003	Outfall 003	Sample 1D:	G= Grab	X2=	SL. Sludge A Indoor/Ambient Air	GW=Groundwater SW=St		8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Village M Cod	617.884.5980		m Ave	5	dams	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
		1611	Mary	Beerived by:							•	15-01	6-77	Date:	C=Compsite	X3=	SG	SW=Surface Water WV		4-HNO ₃	CINIC						-1
	1	M	1	пру:								0000	1000	Time:			I Gas	WW Waste Water		S-NaOri a A	1	PON	 	180	Io	Invoice To: Christopher Gill	
												6	0		ype					12=	o sandras		/ellesley	80 William St, Suite 400	Gulf Oil LP	hristoph	Page
	1	6	6/2	D			4		-			WS	WS		VOA	Wals				- Country	And		, MA 02	n St, Su	P	er Gill	2
	1	18	CIP	Date:			-			+				-	Ambe	_						0110	Wellesley, MA 02481-3705	ite 400			Q,
	_	7/	1				1				\wedge			-	Clear	-	_	Containers		!	100	Ouote/RON	5				2
		100	00:00	Time:							A	A	4	# of	Plasti	c		iers				yo-					100
Course	Cura Coura	Connection	Con Con	Temp °C								2	×	Cu,	al Rece Pb, Ni		d, Cr,		none								
	3	Clive.	N O) Č								×		LAS	50	_			F	List P		-	+		_		
☐ Ambient ☐ Iced	Condition upon receipt		E-mail to:	EDD format:														or Change	Analucie	List Preservative Code below:		The state of the s	Location:		Site Name:	Project No:	
			aadams@gulfoil.com, cgill@gulfoil.com																	e below:			281/E				All TAT Min. 24 Samples
Refrigerated [Custody Seals:		oil.com, cgill@			0										chlor	rinated	1					281 Eastern Ave, Chelsea		Gulf Ch	Gu	's subject to lal i-hr notification disposed after
☐ Dì VOA Frozen ☐ Soil Jar Frozen	□ Present □ Intact □ Broken		gulfoil.com				Zn - 5 µg/L	Cr - 1 µg/L	Cu - 0.5 µg/L	Cd, Pb, Ni - 0.2 ug/L	Required Minimum Levels:	**LC50 sub to GZA	* Report metals down to MDL		11*	☐ ASP A* ☐ ASP B*	QA*	RCP Report?	Yes No	* additional charges may appply			Cheisea State: MA		Gulf Chelsea Terminal	Gulf Chelsea	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.

Batch Summary

'[none]'

Subcontracted Analyses

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1710945

Microbiological Analyses

SC36392-01 (Outfall 003)

1710957

General Chemistry Parameters

1710957-SRM1

1710957-SRM2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1710965</u>

Total Metals by EPA 200/6000 Series Methods

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711007</u>

General Chemistry Parameters

1711007-BLK1

1711007-BS1

1711007-DUP1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1711008

General Chemistry Parameters

1711008-BLK1

1711008-BS1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711096</u>

Semivolatile Organic Compounds by GCMS

1711096-BLK1

1711096-BLK2

1711096-BS1

1711096-BS2

1711096-BSD1

1711096-BSD2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

SC36392-01RE1 (Outfall 003)

1711116

Volatile Organic Compounds

1711116-BLK1

1711116-BLK2

1711116-BS1

1711116-BS2

1711116-BSD1

1711116-BSD2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711119</u>

General Chemistry Parameters

1711119-BLK1

1711119-BS1

1711119-SRM1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711426</u>

General Chemistry Parameters

1711426-DUP1

1711426-SRM1

1711426-SRM2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711573</u>

General Chemistry Parameters

1711573-BLK1

1711573-BS1

1711573-CCB1

1711573-CCB2

1711573-CCB3

1711573-CCB4

1711573-CCB5

1711573-CCV1

1711573-CCV2

1711573-CCV3

1711573-CCV4

1711573-CCV5

1711573-SRM1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

392124A

Subcontracted Analyses

BY50548-BLK

BY50548-DUP

BY50548-LCS

BY50548-MS

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

393336A

Subcontracted Analyses

BY50549-BLK

BY50549-LCS

SC36392-01 (Outfall 003)

S703654

Semivolatile Organic Compounds by GCMS

S703654-CAL1

S703654-CAL2

S703654-CAL3

S703654-CAL4

S703654-CAL5

S703654-CAL6

S703654-CAL7

S703654-CAL8

S703654-CAL9

S703654-CALA

S703654-CALB

S703654-ICV1

S703654-LCV1

S703654-LCV2

S703654-TUN1

S705262

Semivolatile Organic Compounds by GCMS

S705262-CAL1

S705262-CAL2

S705262-CAL3

S705262-CAL4

S705262-CAL5

S705262-CAL6

S705262-CAL7

S705262-CAL8

S705262-CAL9

S705262-CALA

S705262-ICV1

S705262-LCV1

S705262-LCV2

S705262-LCV3

S705262-TUN1

S705740

Volatile Organic Compounds

S705740-CAL1

S705740-CAL2

S705740-CAL3

S705740-CAL4

S705740-CAL5

S705740-CAL6

S705740-CAL7

S705740-CAL8

S705740-CAL9

S705740-CALA

S705740-CALB

S705740-ICV1

S705740-LCV1

S705740-LCV2

S705740-TUN1

S705799

General Chemistry Parameters

S705799-CAL1

S705799-CAL2

S705799-CAL3

GE05500 GAT

S705799-CAL4

S705799-CAL5

S705799-CAL6

7703777 CILE

S705799-CAL7

S705799-CAL8

S705799-ICB1

S705799-ICV1

S705898

Volatile Organic Compounds

S705898-CCV1

S705898-TUN1

S706037

Semivolatile Organic Compounds by GCMS

S706037-CCV1

S706037-TUN1

S706180

Semivolatile Organic Compounds by GCMS

S706180-CCV1

S706180-TUN1

S706181

Semivolatile Organic Compounds by GCMS

S706181-CCV1

S706181-TUN1

S706219

Semivolatile Organic Compounds by GCMS

S706219-CCV1

S706219-TUN1